OPEN Foundation

Search
Close this search box.

Psychiatry

Increased amygdala responses to emotional faces after psilocybin for treatment-resistant depression

Abstract

Recent evidence indicates that psilocybin with psychological support may be effective for treating depression. Some studies have found that patients with depression show heightened amygdala responses to fearful faces and there is reliable evidence that treatment with SSRIs attenuates amygdala responses (Ma, 2015). We hypothesised that amygdala responses to emotional faces would be altered post-treatment with psilocybin. In this open-label study, 20 individuals diagnosed with moderate to severe, treatment-resistant depression, underwent two separate dosing sessions with psilocybin. Psychological support was provided before, during and after these sessions and 19 completed fMRI scans one week prior to the first session and one day after the second and last. Neutral, fearful and happy faces were presented in the scanner and analyses focused on the amygdala. Group results revealed rapid and enduring improvements in depressive symptoms post psilocybin. Increased responses to fearful and happy faces were observed in the right amygdala post-treatment, and right amygdala increases to fearful versus neutral faces were predictive of clinical improvements at 1-week. Psilocybin with psychological support was associated with increased amygdala responses to emotional stimuli, an opposite effect to previous findings with SSRIs. This suggests fundamental differences in these treatments’ therapeutic actions, with SSRIs mitigating negative emotions and psilocybin allowing patients to confront and work through them. Based on the present results, we propose that psilocybin with psychological support is a treatment approach that potentially revives emotional responsiveness in depression, enabling patients to reconnect with their emotions.
Roseman, L., Demetriou, L., Wall, M. B., Nutt, D. J., & Carhart-Harris, R. L. (2017). Increased amygdala responses to emotional faces after psilocybin for treatment-resistant depression. Neuropharmacology. 10.1016/j.neuropharm.2017.12.041
Link to full text

Psychiatry & the psychedelic drugs. Past, present & future.

Abstract

The classical psychedelic drugs, including psilocybin, lysergic acid diethylamide and mescaline, were used extensively in psychiatry before they were placed in Schedule I of the UN Convention on Drugs in 1967. Experimentation and clinical trials undertaken prior to legal sanction suggest that they are not helpful for those with established psychotic disorders and should be avoided in those liable to develop them. However, those with so-called ‘psychoneurotic’ disorders sometimes benefited considerably from their tendency to ‘loosen’ otherwise fixed, maladaptive patterns of cognition and behaviour, particularly when given in a supportive, therapeutic setting. Pre-prohibition studies in this area were sub-optimal, although a recent systematic review in unipolar mood disorder and a meta-analysis in alcoholism have both suggested efficacy. The incidence of serious adverse events appears to be low. Since 2006, there have been several pilot trials and randomised controlled trials using psychedelics (mostly psilocybin) in various non-psychotic psychiatric disorders. These have provided encouraging results that provide initial evidence of safety and efficacy, however the regulatory and legal hurdles to licensing psychedelics as medicines are formidable. This paper summarises clinical trials using psychedelics pre and post prohibition, discusses the methodological challenges of performing good quality trials in this area and considers a strategic approach to the legal and regulatory barriers to licensing psychedelics as a treatment in mainstream psychiatry.
Rucker, J. J., Iliff, J., & Nutt, D. J. (2017). Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology. 10.1016/j.neuropharm.2017.12.040
Link to full text

Psychiatry & the psychedelic drugs. Past, present & future.

Abstract

The classical psychedelic drugs, including psilocybin, lysergic acid diethylamide and mescaline, were used extensively in psychiatry before they were placed in Schedule I of the UN Convention on Drugs in 1967. Experimentation and clinical trials undertaken prior to legal sanction suggest that they are not helpful for those with established psychotic disorders and should be avoided in those liable to develop them. However, those with so-called ‘psychoneurotic’ disorders sometimes benefited considerably from their tendency to ‘loosen’ otherwise fixed, maladaptive patterns of cognition and behaviour, particularly when given in a supportive, therapeutic setting. Pre-prohibition studies in this area were sub-optimal, although a recent systematic review in unipolar mood disorder and a meta-analysis in alcoholism have both suggested efficacy. The incidence of serious adverse events appears to be low. Since 2006, there have been several pilot trials and randomised controlled trials using psychedelics (mostly psilocybin) in various non-psychotic psychiatric disorders. These have provided encouraging results that provide initial evidence of safety and efficacy, however the regulatory and legal hurdles to licensing psychedelics as medicines are formidable. This paper summarises clinical trials using psychedelics pre and post prohibition, discusses the methodological challenges of performing good quality trials in this area and considers a strategic approach to the legal and regulatory barriers to licensing psychedelics as a treatment in mainstream psychiatry.
Rucker, J. J., Iliff, J., & Nutt, D. J. (2017). Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology. 10.1016/j.neuropharm.2017.12.040
Link to full text

Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression

Abstract

Introduction: It is a basic principle of the ‘psychedelic’ treatment model that the quality of the acute experience mediates long-term improvements in mental health. In the present paper we sought to test this using data from a clinical trial assessing psilocybin for treatment-resistant depression (TRD). In line with previous reports, we hypothesized that the occurrence and magnitude of Oceanic Boundlessness (OBN) (sharing features with mystical-type experience) and Dread of Ego Dissolution (DED) (similar to anxiety) would predict long-term positive outcomes, whereas sensory perceptual effects would not.
Material and Methods: Twenty patients with treatment resistant depression underwent treatment with psilocybin (two separate sessions: 10mg and 25mg psilocybin). The Altered States of Consciousness (ASC) questionnaire was used to assess the quality of experiences in the 25mg psilocybin session. From the ASC, the dimensions OBN and DED were used to measure the mystical-type and challenging experiences, respectively. The Self-Reported Quick Inventory of Depressive Symptoms (QIDS-SR) at 5 weeks served as the endpoint clinical outcome measure, as in later time points some of the subjects had gone on to receive new treatments, thus confounding inferences. In a repeated measure ANOVA, Time was the within-subject factor (independent variable), with QIDS-SR as the within-subject dependent variable in baseline, 1-day, 1-week, 5-weeks. OBN and DED were independent variables. OBN-by-time and DED-by-time interactions were the primary outcomes of interest.
Results: For the interaction of OBN and DED with Time (QIDS-SR as dependent variable), the main effect and the effects at each time point compared to baseline were all significant (p = 0.002 and p = 0.003, respectively, for main effects), confirming our main hypothesis. Furthermore, Pearson’s correlation of OBN with QIDS-SR (5 weeks) was specific compared to perceptual dimensions of the ASC (p < 0.05).
Discussion: This report further bolsters the view that the quality of the acute psychedelic experience is a key mediator of long-term changes in mental health. More specifically, future therapeutic work with psychedelics may consider investigating ways which enhance mystical-type experience and reduce anxiety, given the growing evidence that this serves the efficacy of the treatment model.
Roseman, L., Nutt, D. J., & Carhart-Harris, R. L. (2017). Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Frontiers in Pharmacology8, 974. 10.3389/fphar.2017.00974
Link to full text

Ketamine and pharmacological imaging: use of functional magnetic resonance imaging to evaluate mechanisms of action

Abstract

Ketamine has been used as a pharmacological model for schizophrenia as subanesthetic infusions have been shown to produce temporary schizophrenia-like symptoms in healthy humans. More recently, ketamine has emerged as a potential treatment for multiple psychiatric disorders, including treatment-resistant depression and suicidal ideation. However, the mechanisms underlying both the psychotomimetic and the therapeutic effects of ketamine remain poorly understood. This review provides an overview of what is known of the neural mechanisms underlying the effects of ketamine and details what functional MRI studies have yielded at a systems level focused on brain circuitry. Multiple analytic approaches show that ketamine exerts robust and consistent effects at the whole-brain level. These effects are highly conserved across human and nonhuman primates, validating the use of nonhuman primate models for further investigations with ketamine. Regional analysis of brain functional connectivity suggests that the therapeutic potential of ketamine may be derived from a strengthening of executive control circuitry, making it an intriguing candidate for the treatment of drug abuse. There are still important questions about the mechanism of action and the therapeutic potential of ketamine that can be addressed using appropriate functional neuroimaging techniques.
Maltbie, E. A., Kaundinya, G. S., & Howell, L. L. (2017). Ketamine and pharmacological imaging: use of functional magnetic resonance imaging to evaluate mechanisms of action. Behavioural Pharmacology28(8), 610-622. 10.1097/FBP.0000000000000354
Link to full text

Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine

Abstract

Rationale

Clinical data with 3,4-methylenedioxymethamphetamine (MDMA) in post-traumatic stress disorder (PTSD) patients recently stimulated interest on the potential therapeutic use of psychedelics in disorders characterized by maladaptive memories, including substance use disorders (SUD). The rationale for the use of MDMA in PTSD and SUD is being extended to a broader beneficial “psychedelic effect,” which is supporting further clinical investigations, in spite of the lack of mechanistic hypothesis. Considering that the retrieval of emotional memories reactivates specific brain mechanisms vulnerable to inhibition, interference, or strengthening (i.e., the reconsolidation process), it was proposed that the ability to retrieve and change these maladaptive memories might be a novel intervention for PTSD and SUD. The mechanisms underlying MDMA effects indicate memory reconsolidation modulation as a hypothetical process underlying its efficacy.

Objective

Mechanistic and clinical studies with other two classes of psychedelic substances, namely cannabinoids and ketamine, are providing data in support of a potential use in PTSD and SUD based on the modulation of traumatic and appetitive memory reconsolidation, respectively. Here, we review preclinical and clinical data on cannabinoids and ketamine effects on biobehavioral processes related to the reconsolidation of maladaptive memories.

Results

We report the findings supporting (or not) the working hypothesis linking the potential therapeutic effect of these substances to the underlying reconsolidation process. We also proposed possible approaches for testing the use of these two classes of drugs within the current paradigm of reconsolidation memory inhibition.

Conclusions

Metaplasticity may be the process in common between cannabinoids and ketamine/ketamine-like substance effects on the mediation and potential manipulation of maladaptive memories.

Fattore, L., Piva, A., Zanda, M. T., Fumagalli, G., & Chiamulera, C. (2017). Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine. Psychopharmacology, 1-13. 10.1007/s00213-017-4793-4
Link to full text

Progress and promise for the MDMA drug development program

Abstract

Pharmacotherapy is often used to target symptoms of posttraumatic stress disorder (PTSD), but does not provide definitive treatment, and side effects of daily medication are often problematic. Trauma-focused psychotherapies are more likely than drug treatment to achieve PTSD remission, but have high dropout rates and ineffective for a large percentage of patients. Therefore, research into drugs that might increase the effectiveness of psychotherapy is a logical avenue of investigation. The most promising drug studied as a catalyst to psychotherapy for PTSD thus far is 3,4-methylenedioxymethamphetamine (MDMA), commonly known as the recreational drug “Ecstasy.” MDMA stimulates the release of hormones and neurochemicals that affect key brain areas for emotion and memory processing. A series of recently completed phase 2 clinical trials of MDMA-assisted psychotherapy for treatment of PTSD show favorable safety outcomes and large effect sizes that warrant expansion into multi-site phase 3 trials, set to commence in 2018. The nonprofit sponsor of the MDMA drug development program, the Multidisciplinary Association for Psychedelic Studies (MAPS), is supporting these trials to explore whether MDMA, administered on only a few occasions, can increase the effectiveness of psychotherapy. Brain imaging techniques and animal models of fear extinction are elucidating neural mechanisms underlying the robust effects of MDMA on psychological processing; however, much remains to be learned about the complexities of MDMA effects as well as the complexities of PTSD itself.
Feduccia, A. A., Holland, J., & Mithoefer, M. C. (2017). Progress and promise for the MDMA drug development program. Psychopharmacology, 1-11. 10.1007/s00213-017-4779-2
Link to full text

Studies with psychedelic drugs in human volunteers

Abstract

Scientific curiosity and fascination have played a key role in human research with psychedelics along with the hope that perceptual alterations and heightened insight could benefit well-being and play a role in the treatment of various neuropsychiatric disorders. These motivations need to be tempered by a realistic assessment of the hurdles to be cleared for therapeutic use. Development of a psychedelic drug for treatment of a serious psychiatric disorder presents substantial although not insurmountable challenges. While the varied psychedelic agents described in this chapter share some properties, they have a range of pharmacologic effects that are reflected in the gradation in intensity of hallucinogenic effects from the classical agents to DMT, MDMA, ketamine, dextromethorphan and new drugs with activity in the serotonergic system. The common link seems to be serotonergic effects modulated by NMDA and other neurotransmitter effects. The range of hallucinogens suggest that they are distinct pharmacologic agents and will not be equally safe or effective in therapeutic targets. Newly synthesized specific and selective agents modeled on the legacy agents may be worth considering. Defining therapeutic targets that represent unmet medical need, addressing market and commercial issues, and finding treatment settings to safely test and use such drugs make the human testing of psychedelics not only interesting but also very challenging.
Sellers, E. M., Romach, M. K., & Leiderman, D. B. (2017). Studies with psychedelic drugs in human volunteers. Neuropharmacology. 10.1016/j.neuropharm.2017.11.029
Link to full text

Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system

Abstract

Fewer than 50% of all patients with major depressive disorder (MDD) treated with currently available antidepressants (ADs) show full remission. Moreover, about one third of the patients suffering from MDD does not respond to conventional ADs and develop treatment-resistant depression (TRD). Ketamine, a non-competitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect, especially in patients suffering from TRD. Hippocampi of ketamine-treated mice were analysed by metabolome and proteome profiling to delineate ketamine treatment-affected molecular pathways and biosignatures. Our data implicate mitochondrial energy metabolism and the antioxidant defense system as downstream effectors of the ketamine response. Specifically, ketamine tended to downregulate the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) metabolite ratio which strongly correlated with forced swim test (FST) floating time. Furthermore, we found increased levels of enzymes that are part of the ‘oxidative phosphorylation’ (OXPHOS) pathway. Our study also suggests that ketamine causes less protein damage by rapidly decreasing reactive oxygen species (ROS) production and lend further support to the hypothesis that mitochondria have a critical role for mediating antidepressant action including the rapid ketamine response.
Weckmann, K., Deery, M. J., Howard, J. A., Feret, R., Asara, J. M., Dethloff, F., … & Webhofer, C. (2017). Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system. Scientific reports7(1), 15788. 10.1038/s41598-017-16183-x
Link to full text

Ketamine's antidepressant effect is mediated by energy metabolism and antioxidant defense system

Abstract

Fewer than 50% of all patients with major depressive disorder (MDD) treated with currently available antidepressants (ADs) show full remission. Moreover, about one third of the patients suffering from MDD does not respond to conventional ADs and develop treatment-resistant depression (TRD). Ketamine, a non-competitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect, especially in patients suffering from TRD. Hippocampi of ketamine-treated mice were analysed by metabolome and proteome profiling to delineate ketamine treatment-affected molecular pathways and biosignatures. Our data implicate mitochondrial energy metabolism and the antioxidant defense system as downstream effectors of the ketamine response. Specifically, ketamine tended to downregulate the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) metabolite ratio which strongly correlated with forced swim test (FST) floating time. Furthermore, we found increased levels of enzymes that are part of the ‘oxidative phosphorylation’ (OXPHOS) pathway. Our study also suggests that ketamine causes less protein damage by rapidly decreasing reactive oxygen species (ROS) production and lend further support to the hypothesis that mitochondria have a critical role for mediating antidepressant action including the rapid ketamine response.
Weckmann, K., Deery, M. J., Howard, J. A., Feret, R., Asara, J. M., Dethloff, F., … & Webhofer, C. (2017). Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system. Scientific reports7(1), 15788. 10.1038/s41598-017-16183-x
Link to full text